

LA-UR-19-22972

Approved for public release; distribution is unlimited.

Water Imaging in Mirai Short-Stack provided by USCAR Title:

Author(s): Borup, Rodney L.

Intended for: Presentation to USCAR (GM and Ford) plus distribution to other automotive OEMs, Honda, Toyota, Bosch

Issued: 2019-04-02

Water Imaging in Mirai Short-Stack provided by USCAR

LANL: Kavi Chintam, Derek Richard, Andrew Baker, Rod Borup NIST: Jake LaManna, Dan Hussey, Eli Baltic, David Jacobson

USCAR: Dave Masten, Joe Fairweather, Sinichi Hirano, Chunchuan Xu

Mirai Component Summary

Cathode

- $\sim 0.33 \text{ mg}_{Pt}/\text{cm}^2$ -- Cathode layer $\sim 9 \mu \text{m}$
 - Cathode Layer decreases in thickness to about 8.1 mm at 3000 hrs
- PtCo/C: Pt/Co=6.6, Pt = 87mole%, Co = 13mole% (XRF)

Anode

• 0.05 mg_{Pt}/cm² -- Anode layer \sim 2.3 μ m

Total Mirai Stack Loading: ~ 26 g Pt (255 cm² active area * 0.38 mg Pt/cm² * 270 cells)

Membrane

- \sim 10 10.5 μ m with ePTFE
- Ce = $\sim 1 2.5 \mu g/cm^2$ -- large amounts of Ce in GDL MPLs

GDLs

- PAN Fiber Substrate with MPL
- Anode: \sim 150 μ m total with about 60 μ m MPL
- Cathode: $^{\sim}$ 160 μm total with about 40 μm MPL

Toyota Mirai 5 Cell Short-Stack Dimensions/ Materials

• 5 cell- 255 cm² active area per cell, the plate materials and Dimension/thickness labeled in picture.

Approximate Toyota Mirai Operating Conditions

Stack	T(cool-	coolant		Ano P		Ano-in		Cat P	Cat P		
Curren	out)	DT	Ano Stoic	(in)	Ano-in RH	N2%	Cat Stoic	(in)	(out)	Cat-in RH	Cat RH-out
amps	С	С		kPa	%	%		kPa	kPa	%	%
12.5	58	2	4.0	150	100%	23%	1.60	101	101	dry	132%
50.0	58	2	1.7	150	100%	22%	1.60	105	102	dry	133%
70.0	58	2	1.7	155	100%	22%	1.60	107	102	dry	133%
87.5	61	2	1.7	160	100%	21%	1.55	108	103	dry	120%
105.0	61	3	1.6	160	100%	19%	1.55	110	103	dry	120%
125.0	64	3	1.6	170	100%	17%	1.55	122	115	dry	117%
150.0	61	4	1.5	170	100%	16%	1.55	137	130	dry	151%
225.0	75	6	1.5	185	100%	17%	1.54	190	180	dry	113%
312.5	80	8	1.5	200	100%	13%	1.53	200	180	dry	93%
450.0	80	10	1.4	225	100%	11%	1.53	220	195	dry	100%
Excursion 325.0	92	8	1.4	180	100%	11%	1.33	204	190	dry	69%

- Stack runs to as high as 500 A in transients. Use same operating conditions as 450 A
- Anode-inlet RH assumes at coolant-in T and anode RH-out is 100%.
 May be somewhat lower, especially at max CD, recommend sensitivity studies.
- Anode-inlet N2% is calculated using estimated 75% anode-out H2% and estimated anode stoic
- Can use either cat-in or cat-out for P-control. DP will depend on stoic, operating conditions, etc.
- Cat RH-out is information only. Inlet is dry, control to T(cool-out).

In addition –

- Isothermal/Isobaric polarization curves at 60C and 80C
- RH Sensitivity: Anode and Cathode
- Stoich Sensitivity: Anode and Cathode

Base Neutron Image of 5-Cell Mirai Short Stack

Neutron Image of 5-Cell Mirai Short Stack

Colorized Water Image of 5-Cell Mirai Short Stack

Due to 'issues' during imaging, not all colorization is identical; however it is consistent within each separate matrix

Water Line profiles

(Don't really show much obvious that isn't visual)

USCAR Matrix of Operating Conditions

than low current/flowrates

Comment on Water Images

High Current & Flowrates show much less liquid water than low current/flowrates

- → Cathode does not show flooding limitations at high power
- → Low power does show flooding, and instabilities

Cathode outlet manifold always has water

Cathode outlet active area edge always shows liquid water

At Anode segment 1 and 2 interface always has liquid water present

Anode/coolant mixing/distribution shows liquid water; amount varies with flowrate

Cathode inlet manifold never has water

Isothermal and Isobaric Polarization Curves at 80C and 60C

80C Pol Curve: Lower Currents

100%RH anode/ dry cath.

Variable stoich + N2 composition (USCAR matrix)

200/200 kPa An/Ca outlet pressures

80C pol curve: Higher currents

Increasing current

Decreasing water

100%RH anode/ dry cath.

Variable stoich + N2 composition (USCAR matrix)

200/200 kPa An/Ca outlet pressures

60C Pol Curve: Lower Currents

Increasing current

No 12.5A at 60C due to instable operation (flooding)

Increasing water

100%RH anode/ dry cath.

Variable stoich + N2 composition (USCAR matrix)

200/200 kPa An/Ca outlet pressures

60C Pol Curve: Higher Currents

Increasing current

70A 125A 225A 350A

Decreasing water

Similar water

Increasing water

100%RH anode/ dry cath.

Variable stoich + N2 composition (USCAR matrix)

200/200 kPa An/Ca outlet pressures

Higher currents do not show large water build-up/flooding even at 60 C

Operating Temperature Comparison

80C

12.5A (80C)

(Not stable at 60C) $H_2+N_2 = 3.5 \text{ slpm}$

Cathode stoich = 1.55 Cathode – Dry Anode – 100% RH

60C Initial Sequence

Anode stoich: 3 $H_2+N_2 = 3.5 \text{ slpm}$ 25A (redo)

50A

Anode stoich: 1.7 $H_2+N_2 = 3.9 \text{ slpm}$

70A

Anode stoich: 1.7 $H_2+N_2 = 5.5$ slpm

Sensitivity to RH, Stoich, and Temperature

60C "Transient" Operation

• 10 min intervals: $25A \rightarrow 300A \rightarrow 25A$

80C Cathode Stoich Sensitivity (250A)

Increasing water? ... need to quantify

250 A, 100%RH anode/ dry cath. 1.6 An stoich 200/200 kPa An/Ca outlet pressures

60C Anode RH Sensitivity

Decreasing anode RH

Decreasing water at Anode Inlet

250 A, dry cathode 1.6/1.55 An/Ca stoich 200/200 kPa An/Ca outlet pressures

60C Anode Stoich Sensitivity

Decreasing water

Similar water

Increasing water

250 A, 100%RH anode/ dry cath. 1.55 Ca stoich 200/200 kPa An/Ca outlet pressures

Polarization Curves at 60C and 80C

Selected Conclusions

[Conditions related to USCAR Provided Toyota Mirai operating conditions]

- Liquid water primarily on Anode side
- All conditions show some water; especially at 2/3 serpentine interface and cathode outlet weld area
- Anode Inlet/outlet (and Cooling serpentine returns) show water build-up.
 This area is logical area for both distribution problems (low current) and possible durability concerns such as carbon corrosion
- Stack water is primarily sensitive to anode flowrate

Selected Conclusions

[RH, Stoich, Temp sensitivity Tests]

- Stack water is relatively insensitive to cathode RH and stoichiometry (to 1.1)
- Low current/low anode flowrates show liquid water on cathode
 - Water cross-over to cathode appears to be logical cause
- Response time of stack to water is long compared to drive cycle conditions
- Low current/temperature points were primarily unstable during operation;
 are possibly more problematic;
 - (How does this car idle? Stack probably has to either turn off or run at higher power than idle)
- Liquid water is primarily (almost always on anode). A few points should be examined for corrosion.
- Mirai stack design seems well designed for operation at high currents/flowrates. Flooding does not seem an issue at high currents.

80C Cathode RH Sensitivity (250A)

Decreasing cathode RH

Similar water

250 A, 100%RH anode 1.6/1.55 An/Ca stoich 200/200 kPa An/Ca outlet pressures

60C Cathode Stoich Sensitivity

Decreasing cathode stoich.

Increasing water? ... need to quantify

250 A, 100%RH anode/ dry cath. 1.6 An stoich 200/200 kPa An/Ca outlet pressures

Good Operation at Cathode stoich of 1.2!

60C Cathode RH Sensitivity

Decreasing cathode RH

40%RH

20%RH

dry

Similar water

250 A, 100%RH anode 1.6/1.55 An/Ca stoich 200/200 kPa An/Ca outlet pressures

80C Anode RH Sensitivity

Decreasing anode RH

Decreasing water

250 A, dry cathode 1.6/1.55 An/Ca stoich 200/200 kPa An/Ca outlet pressures

80C Anode Stoich Sensitivity (250A)

250 A, 100%RH anode/ dry cath. 1.55 Ca stoich 200/200 kPa An/Ca outlet pressures

RH & Stoich vs. Total Voltage at 80C

RH & Stoich vs. Total Voltage at 60C

Toyota Short-stack Compression Hardware Exploded View

Toyota Mirai 5 Cell Short-Stack Dimensions/ Materials

• 5 cell- 255 cm² active area per cell, the plate materials and Dimension/thickness labeled in picture.

50A

70A

87.5A

105A

125A

150A / 61C

150A / 65C

225A

312A

